文章发布
网站首页 > 文章发布 > 慈溪优质导轨价格

慈溪优质导轨价格

发布时间:2022-12-23 01:22:41
慈溪优质导轨价格

慈溪优质导轨价格

伺服电机在机电类行业应用非常广,而伺服电机又有直流伺服电机和交流伺服电机,那怎么去区别呢?下面由智富数控小编为你讲解:一、直流伺服电机输入或输出为直流电能的旋转电机。它具有动态响应快、抗干扰能力强等优点,因而得到广泛地应用。通常是由模拟运放构成PI或pid电路;信号调理主要是对反馈信号进行滤波、放大。伺服电机直流伺服电机分为有刷和无刷电机,有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),会产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。二、交流伺服电机输入或输出为交流电能的旋转电机。它速度控制特性良好,在整个速度区内可实现平滑控制,几乎无振荡,90%以上的高效率,发热少,高速控制,高精度位置控制(取决于编码器精度),额定运行区域内,可实现恒力矩,惯量低,低噪音,无电刷磨损,免维护(适用于无尘、易爆环境)。交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。综上所述,不管是直流伺服电机还是交流伺服电机,都有着它们各自的优点和特性,要根据自身实际情况挑选合适的伺服电机。

慈溪优质导轨价格

慈溪优质导轨价格

一、 变频器的几种状态1. 待机状态:已合高压,未启动变频器,系统发出系统待机信号,可启动变频器2. 运行状态:变频器已启动并运行,对应负载已经开始旋转,界面显示正在运行3. 停机状态:变频处于非运行状态为系统停机状态。4. 本控/远控状态:变频器1) 本控状态:变频器柜门选择开关处于本控位置,只允许在变频器本机处进行操作2) 远控状态:变频器柜门选择开关处于远控位置,只允许在DCS处进行操作5. 变频/工频旁路状态:1) 旁路柜真空接触器KM1,KM2及刀闸QS1,QS2合上,KM3断开时,选择用变频器运行,系统处于变频状态2) 旁路柜真空接触器KM3合上,KM1及KM2断开时,选择用工频电网运行,界面将显示工频旁路运行状态二、 控制电源的上电操作1. 合控制柜内交流控制电源开关2. 按下UPS电源按钮3秒左右,直至UPS打开3. 合控制柜内直流控制电源开关,观察本机操作屏应自动进入变频器主界面,无任何故障后,显示“控制器就绪”。三、高压上电,启动操作1. 用本机界面启动1) 将旁路柜柜门的选择开关拨到手动位置2) 确定将运行的方式。变频方式下合上旁路柜真空接触器KM1,KM2以及刀闸QS1,QS2;工频方式下仅合KM3。旁路柜上相应指示灯应点亮。在合上刀闸后,应通过旁路柜观察窗检查刀闸是否到位,然后合变频器上口真空断路器。(一般情况下,隔离刀闸QS1 ,QS2是不分闸的,只需操作真空接触器)3) 将控制柜柜门的选择开关拨到本控位置,进入功能界面,选为本机给定4) 确认系统已处于待机状态5) 确认风门在全开位置,电机在静止状态6) 在开环状态下设定给定频率7) 按下操作面板的启动按钮8) 观察运行频率及电压、电流是否正常2. 用远方启动) 将旁路柜柜门的选择开关拨到自动位置2) 确定将运行的方式。变频方式下合上旁路柜真空接触器KM1,KM2以及刀闸QS1,QS2;工频方式下仅合KM3。旁路柜上相应指示灯应点亮。在合上刀闸后,应通过旁路柜观察窗检查刀闸是否到位,然后合变频器上口真空断路器。(一般情况下,隔离刀闸QS1 ,QS2是不分闸的,只需操作真空接触器)3) 将控制柜柜门的选择开关拨到远控位置,进入功能界面,选为模拟给定4) 确认系统已处于待机状态5) 确认阀门在全关位置,电机在静止状态6) 在开环状态下设定给定频率7) 点击启动按钮

慈溪优质导轨价格

慈溪优质导轨价格

一、变频器的分类频器的分类方法很多,这里介绍按工作电源的电压等级分类和按内部直流电源的性质分类两种分类方法。变频器按工作电源的电压等级分类,有高压和低压两大类别。高压变频器的电压等级有6kV和10kV等几种;低压变频器的电压等级常使用的是380V,660V和1140V的电压等级在一些较特殊的场合也有应用。变频器变频器的输入和输出通常是三相交流电,但也有少量小功率变频器采用单相输入、三相输出的结构形式。变频器按内部直流电源的性质分类有电压型变频器和电流型变频器。电压型变频器的电路结构示意图见图1。它的中间直流环节采用大电容器C滤波。电容器在充放电过程中能储存电场能或释放电场能;从而使直流环节的电压UD比较平稳,内阻较小,相当于电压源,常应用于负载电压变化较大的场合。电流型变频器的电路结构示意图见图2。中间直流环节采用电抗器作为储能元件进行滤波,直流电流比较平稳。这种直流环节的滤波元件电感L对直流电路中的交流纹波会表现出较大的感抗,具有较好的滤波效果,并有近似电流源的特性,因此将采用这种直流环节的变频器称作电流型变频器。常应用于负载电流变化较大的场合。变频器的内部主电路当前常用的变频器多采用“交-直-交”的电路结构,其内部主电路由整流、滤波和逆变几大部分组成,如图3所示。三相交流电源从变频器R、S、T端输入,经由二极管D1~D6构成三相整流桥整流成直流电,电压为UD。电容器C1和C2是滤波电容器。6个IGBT管V1~V6构成三相逆变桥,把直流电逆变成频率和电压任意可调的三相交流电输送给负载电动机。图3电路示意图中使用了两个滤波电容器C1和C2串联,是为了提高其耐压。电容器两端各并联了一个电阻,其中电阻R1与电容器C1并联,电阻R2与电容器C2并联。这两个电阻称作均压电阻。它们的作用是为了让两只电容器上的电压基本相等,防止电容器在工作中损坏。电容器制造时,由于材料、工艺技术等原因,不可避免地会使每个电容器成品具有不同阻值的漏电电阻,这两个不同阻值的漏电电阻呈串联状态,对电压UD分压,这将使每个电容器承受的电压不相等,甚至使承受电压较高的电容器击穿。与电容器并联的电阻R1和R2可以有效的解决这一问题。均压电阻R1和R2阻值的选取,大大的小于电容器的漏电电阻,较小阻值的均压电阻与较大阻值的漏电电阻并联,并联电阻值基本上取决于较小阻值的均压电阻,这样,只要电阻R1和R2选取相同的阻值,就能保证每个滤波电容器两端电压大致相等,从而保证电容器的运行安全。在整流桥和滤波电容器之间接有一个电阻R和一对接触器触点KM,也有的变频器是电阻R与一只IGBT管并联,其作用机理是相同的。变频器刚接通电源时,滤波电容器上的电压为0V,而电源电压为380V时的整流电压峰值是537V(380V有效值的倍),这样在接通电源的瞬间将有很大的充电冲击电流,有可能损坏整流二极管;另外,端电压为0的滤波电容器会使整流电压瞬间降低至0V,形成对电源网络的干扰。为了解决上述问题,在整流桥和滤波电容器之间接入一个限流电阻R,可将滤波电容器的充电电流限制在一个允许范围内。但是,如果限流电阻R始终接在电路内,其压降将影响变频器的输出电压,也会降低变频器的电能转换效率,因此,滤波电容器充电完毕后,由接触器KM的触点将限流电阻R短接,或者通过控制电路使IGBT导通,均可使限流电阻退出运行。

慈溪优质导轨价格

慈溪优质导轨价格

简 介伺服电机是实现智能制造重要的自动化元件,广泛应用于数控机床、机械手、机器人和一些专用精密设备上。伺服电机的选型对伺服系统的精度、稳定性、态响应、经济性等都有重要的影响,本文主要介绍一下伺服电机的选型。伺服电机选型说明针对伺服电机选型问题,有两种情况,一种是参数选型,一种是设计选型。参数选型:机械机构已确定,且已知转速、扭矩、惯量等选型参数。此时,可根据伺服电机规格表直接选型。设计选型:发生的机械设计阶段,此时需要根据机械末端的位置、速度、精度、动态特性等要求,确定机械机构和减速装置。在机械设计过程中,需计算得出电机的转速、扭矩、惯量比等参数。而后根据伺服电机规格表选型。常见机械机构如图1所示。 图1:常见机械机构伺服电机伺服电机的选型原则·连续工作时的电机转速<电机额定速度·连续工作扭矩<伺服电机额定扭矩·瞬时扭矩<伺服电机扭矩(加速时)·惯量比:根据设备动态性能要求,确定合适的惯量比综上可得出结论,伺服电机的三个选型参数是:转速、扭矩、惯量。注意,没有将功率作为伺服电机的核心选型参数。有些伺服电机厂家的电机系列中,同样功率的电机分小,中大惯量。如下图所示,两个伺服电机功率相同,其中左图为低惯量高速电机,右图为高惯量低速电机。低惯量电机适用于高动态响应、低扭矩场合,高惯量电机适用于高扭矩输出、转速较低的场合。显然功率相同的两个电机,其应用特点不一样。图2:低惯量和高惯量外观对比大家可以想象博尔特和泰森的对比,两人体重可能差别不大,但其个人特点却大相径庭。伺服电机同理。另:从机械设计的角度,伺服电机是通过扭矩驱动机械机构实现运转的。因此通过扭矩选择伺服电机比通过功率选型更准确。功率可作为一个参考选型参数。动惯量和扭矩转动惯量转动惯量是刚体转动惯性的量度,由刚体自身的结构(转轴、质量、形状)决定,与外界因素无关,是刚体的固有性质。图3:圆柱体惯量 规则形状的物体,其惯量都有对应的公式,可参考相关资料。如上图所示,质量为m,半径为R的圆柱体沿轴OO‘旋转时,其旋转惯量J=MR2/2。力矩力矩是用来描述力对刚体的转动作用,如图4所示:图4:力矩如图4所 T=F*r*sinθ=Fd (1)T: 力矩F:作用力d: 力臂即:力矩大小等于力的大小乘以参考点到力的作用线的距离。力矩是矢量,有方向性。电机扭矩在设备启动时,产生加速度,在恒速运动时,克服系统的阻力矩,在设备停止时,产生减速度,使设备快速停止。位置、速度、加速度、扭矩的关系如图5所示:图5:位置、速度、加速度和扭矩的关系 一般的伺服电机,过载扭矩或扭矩一般为额定扭矩的3~5倍。即伺服电机启动时,可输出3~5倍的额定扭矩,以短时间获得足够大的加速度,使电机转速快速达到工作速度。减速时同理。转矩不能持续输出,持续时间过长时,会触发驱动器过载报警。力矩和转动惯量的关系物体的直线运动可用牛顿第二定律描述为: F=m*a (2)F: 物体所受的合力m : 物体的质量a:物体获得的加速度 物体的回转运动,需要用力矩和转动惯量描述,有如下公式T=J*θ (3)T: 扭矩J:转动惯量θ:角加速度由公式(3)可见,扭矩与转动惯量和角加速度成正比。电机输出扭矩一定时,惯量和角加速度成反比。在扭矩输出一定时,惯量越大,其可获得的角加速度越小,即:机械机构的动态性能越差。反之,惯量越小,其可获得的角加速度越大,机械机构的动态性能越好。当伺服电机驱动负载时,公式(3)中的T为伺服电机的输出扭矩,θ为电机轴可获得的角加,J为伺服电转子惯量和负载映射惯量之和。即:=JM+JL (4)J: 回转系统的惯量JM:电机定子惯量JL:负载映射到电机轴上的惯量比如,机械机构通过n=3的减速机连接到电机轴上,通过计算得出减速机前端机械机构的总惯量JZ,设JZ映射到电机轴上的惯量为JL,则:JL=JZ/n2=JZ/9 (5)即:负载的映射惯量与减速比的平方成反比。在机械设计时,根据公式(5),要先算出JZ,然后根据减速比n计算出负载机械机构映射到电机轴上的映射惯量。有时,负载机械机构有多重负载,则负载机械机构的总惯量为多重负载的惯量之和。惯量比映射惯量与电机转子惯量的比值即惯量比。机械机构设计完成后,要合理选择伺服电机,把惯量比限制在一定的范围内,使负载映射惯量与电机转子惯量相匹配。惯量匹配需要根据设备的动态特性、精度要求、负载变化范围等因素综合设计。高动态设备的惯量比一般小于3,比如机床、金属加工设备等。普通设备惯量比,一般小于7,如普通焊接机、包装设备等。低要求设备,一般小于10,如皮带传输、重载变位机等。可结合选择减速比进行惯量匹配。如前文所述,负载在电机轴上的映射惯量与减速比的平方成反比。增大减速比,可以显著减小负载映射到电机轴上的惯量,即减小伺服电机的负载。此时,在负载机械惯量不变的情况下,选择大减速比的减速机,可对应选择容较小的伺服电机,降低综合成本。但,增大减速比会降低负载侧的转速,因为负载侧转速与减速比成反比。减速比要保证减速后的速度能满足负载侧的速度要求。进行惯量匹配时,还需考虑空载和满载情况,设备空载和满载运行时,其负载惯量是不一样的,惯量比也不同。要保证在满载的情况下,惯量比也在合理的范围之内。惯量匹配时,要综合考虑减速比,转速要求,空载和满载等多种情况,兼顾性能和成本。其他考虑因素伺服电机选型时,还要考虑电机法兰、编码器类型、编码器精度、抱闸等因素。电机法兰:涉及电机与机械接口的匹配编码器类型:主要分增量编码器和对值编码器,增量编码器每次上电均需回零,绝值编码器又分单圈和多圈绝值编码器,需视具体应用确定是否需回零,一般多圈绝值编码器不需回零。编码器精度:现在伺服电机的编码器精度做得都比较高,可满足大部分机械对编码器精度的要求。对一些高精密的设备,可考虑选分辨率较高的编码器。抱闸:驱动负重的垂直轴一般需选择带抱闸的伺服电机。伺服驱动器和其他附件选型根据伺服电机的额定电流选择伺服驱动器,一般选伺服驱动器的额定电流等于或稍大于伺服电机的额定电流。驱动器的编码器输入接口需与伺服电机的编码器信号输出格式相匹配。有些伺服品牌,其伺服驱动器与伺服电机已成对匹配,选型非常方便。根据伺服电机和驱动器选择配套的电源线和编码器线。有时为节省成本,也可自己制作。 结伺服电机的选型主要按转速、扭矩和惯量选型。功率可作为选型的一个参考参数。参数选型比较简单,直接按伺服电机规格表选型即可。设计选型需考虑机械机构、负载变化、速度、加速度、精度、惯量匹配等要求,还需考虑机械加工精度,装配精度,传动效率、摩擦力,选型裕量、经济性等,还需考虑法兰、编码器、抱闸等因素。并根据伺服电机进行相应伺服驱动器的选型。这部分工作一般由机械设计人员完成。

慈溪优质导轨价格

慈溪优质导轨价格

一、抱闸结构和控制原理制动的方法一般有两类:机械制动和电气制动。A、机械制动 利用机械装置使电动机断开电源后迅速停转的方法叫机械制动。 常用的方法:电磁抱闸制动。 、电磁抱闸的结构: 变频器主要由两部分组成:制动电磁铁和闸瓦制动器。 制动电磁铁由铁心、衔铁和线圈三部分组成。闸瓦制动器包括闸轮、闸瓦和弹簧等,闸轮与电动机装在同一根转轴上。 2、工作原理:电动机接通电源,同时电磁抱闸线圈也得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。断开开关或接触器,电动机失电,同时电磁抱闸线圈也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。 、电磁抱闸制动的特点 机械制动主要采用电磁抱闸、电磁离合器制动,两者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开),克服弹簧的拉力而满足工作现场的要求。电磁抱闸是靠闸瓦的摩擦片制动闸轮.电磁离合器是利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制动。 优点:电磁抱闸制动,制动力强,广泛应用在起重设备上。它安全可靠,不会因突然断电而发生事故。 缺点:电磁抱闸体积较大,制动器磨损严重,快速制动时会产生振。 4、电动机抱闸间隙的调整方法 ①停机。(机械和电气关闭确认、泄压并动力上锁,并悬挂“正在检修”、“严禁启动”警示牌。) ②卸下扇叶罩;③取下风扇卡簧,卸下扇叶片; ④检查制动器衬的剩余厚度(制动衬的小厚度); ⑤检查防护盘:如果防护盘边缘已经碰到定位销标记时,必须更换制动器盘; ⑥调整制动器的空气间隙:将三个(四个)螺栓拧紧到空气间隙为零,再将螺栓反向拧松角度为120°,用塞尺检查制动器的间隙(至少检查三个点),应该均匀且符合规定值;不对请重新调整;(注:抱闸的型号不同,其反向拧松的角度、制动器的间隙也不一样)。 ⑦手动运行,制动器动作声音清脆、停止位置准确、有效。 ⑧现场6S标准清扫 。 B、电气制动1、能耗制动 ①能耗制动的原理: 电动机切断交流电源后,转子因惯性仍继续旋转,立即在两相定子绕组中通入直流电,在定子中即产生一个静止磁场。转子中的导条就切割这个静止磁场而产生感应电流,在静止磁场中受到电磁力的作用。这个力产生的力矩与转子惯性旋转方向相反,称为制动转矩,它迫使转子转速下降。当转子转速降至0,转子不再切割磁场,电动机停转,制动结束。此法是利用转子转动的能量切割磁通而产生制动转矩的,实质是将转子的动能消耗在转子回路的电阻上,故称为能耗制动。 ②能耗制动的特点: 优点:制动力强、制动平稳、无大的冲击;应用能耗制动能使生产机械准确停车,被广泛用于矿井提升和起重机运输等生产机械。 缺点:需要直 电源反接,旋转磁场反向,转子绕组切割磁场的方向与电动机状态相反,起制动作用,当转速降至接近零时,立即切断电源,避免电动机反转。反接制动的特点:优点是制动力强、停转迅速、无需直流电源;缺点是制动过程冲击大,电能消耗多。 电阻倒拉反接制动 绕线异步电动机提升重物时不改变电源的接线,若不断增加转子电路的电阻,电动机的转子电流下降,电磁转矩减小,转速不断下降,当电阻达到一定值,使转速为0,若再增加电阻,电动机反转。 特点:能量损耗大。二、抱闸的控制方法抱闸的控制可以有多种控制方式,如或接触器逻辑互锁控制,PLC编程控制以及变频器内部自带抱闸逻辑控制等。利用变频器本身的控制功能实现,需要制动时变频器输出24VDC给继电器,继电器带动接触器控制抱闸线圈,输出信号时,电机抱闸就打开,不输出就处于制动状态。优点是变频器控制的电机速度在一个可以人为设置并且到达的时候才动作。满足了驱动设备的正常运行。这种方法很简单,但过于依赖变频器本身,单从这一点来说,安全可靠性差一些。现在在一些关键场合,例如抱闸不参与控制设备运行,而是起安全保障作用的时候,尝试着将抱闸脱离变频器甚至PLC的控制直接做独立继电器控制回路来控制。但一般场合,如起重等行业用变频器本身的逻辑控制功能还是挺实用的。